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Persistence of collective fluctuations inN-body metaequilibrium gravitating and plasma systems
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Starting from a metaequilibrium state~in the Vlasov limit!, the time scale of the fluctuations exhibited by
systems of one-dimensional charged particles is computed. This study is given both for plasma and gravita-
tional systems. The use of the multiple water-bag model allows an analytical treatment for both collective and
individual modes. These results are compared with those obtained by numerical simulations ofN-body sys-
tems. Finally, it is numerically shown that collective effects are responsible for the long time scale of phase-
space holes structures.@S1063-651X~98!10612-8#

PACS number~s!: 45.05.1x, 52.25.Gj, 95.10.Ce, 98.10.1z
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I. INTRODUCTION

The evolution of plasma or gravitational systems is u
ally divided into two parts. In a first step, collective effec
drive the system toward a metaequilibrium state~that is, an
equilibrium in the Vlasov limit!; and in a second step, th
collisional effects slowly thermalize the distribution fun
tion. This scenario has been used by many authors to exp
the relaxation of objects like galaxies for which the evoluti
is driven by the sole collective effects—the universe be
too young to be affected by collisional effects. After th
model of violent relaxation proposed by Lynden-Bell@1#,
many researchers have studied this first step both fro
theoretical and numerical point of view; see, for examp
Gurzadyan@2#, Miller @3#, Reidl @4#, Yamashiro@5#, and
more recently Tsuchiya@6#.

The aim of this paper is to look at the evolution of th
system after this first time for both plasma and gravitat
systems. Then the distribution function is a metaequilibriu
It can be noticed that the first step of evolution involvin
only collective effects does not allow the system to rea
exactly a metaequilibrium state. Eulerian simulations
gravitating systems@7# have shown the formation of holes i
phase space, which remains unchanged for the entire s
lation time and prevents the system from reaching co
pletely such a metaequilibrium. Moreover, in the plas
case, these holes are responsible for the stopping of the
dau damping. It will be seen hereafter that these structu
are strong enough to resist individual effects.

All distributions that depend only on the energy are so
tions of the Vlasov equation. To compute the time scale
the frequency spectrum of the fluctuations, we need to so
the Vlasov equation linearized around this metaequilibriu
Here, a fundamental difference appears between plasma
gravitating systems. While this problem is easily solved b
double Fourier-Laplace transform inx and t ~the Landau
treatment! in the homogeneous plasma case, the gravitatio
problem implies a treatment of the inhomogeneous equ
ria, which, strangely, has not been addressed very m
Then, in order to perform an analytical treatment~at least in
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a first step!, the water-bag model is adopted hereafter:
such a model@8# the distribution function is constant b
steps between two contours defined by a functiona6(x,t),
where the subscript6 refers, respectively, to upper~1! and
lower (2) values of the contour.

Consequently, plasma and gravitational systems exh
very different behavior and indeed analytical treatment. T
comparison of the results is interesting but not obvious, si
in the plasma homogeneous infinite case, we deal wit
continuous spectrum of wave numbers~each with a reso-
nance frequency!, while, in the gravitational case, we have
discrete spectrum of eigenfrequencies.

The paper is organized as follows. After this introductio
Sec. II is devoted to the analytical treatment allowed by
multiple water-bag~MWB! model both for the plasma an
the gravitational case. Section III gives numerical results
the plasma and Sec. IV for the gravitational case. In Sec
the stability of structures initially dug out in the phase-spa
distribution of the gravitational case~holes! is numerically
studied. Section VI gives our conclusions.

II. MULTIPLE WATER-BAG MODEL—
LINEARIZED EQUATION AROUND EQUILIBRIUM

In order to obtain analytical results, we will limit thi
work to a one-dimensional system and a very simple dis
bution function. The simplest distribution functionf (x,v,t)
one can think of is the one that has a single valueA in a
delimited area of the space phase. This model, called w
bag, has been introduced in@8# by De Pack. He, and afte
him many authors, noticed that, with this simple model, a
lytical treatment can be performed@9#. An extension of this
model is the multiple water bag, which presents several a
of constant value, each delimited by a ‘‘bag.’’ The MW
model can be obtained by the discretization of a continu
distribution function. Nevertheless it introduces discontin
ties and the connection of the physical properties of the c
tinuous distribution function and the discretized one deser
a careful treatment@10#.

Here, to describe the metaequilibrium, we will take
73 ©1999 The American Physical Society
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FIG. 1. ~a! MWB model, ~b! cutoff of ~a!
along the O8 O axis.
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MWB, function of the energy alone~see Fig. 1!. Then each
bag is delimited by two contours, symmetric with respect
thex ~space! axis, with, on the two contours of bagi, a given
energy« i . The velocity of a particle moving on the border
bag numberi is 6ai(x) with

« i5
1
2 mai

2~x!1mf~x!, ~1!

wheref(x) is the potential created by all the bags at poinx.
Equation~1! depends on the square of the velocityai ;

this is the reason for the symmetry with respect tox. Let us
call xsi the value for which the bag closes~because of the
absence of neutralizing species, the bags always close in
one-dimensional gravitational case!. For this value, we have
ai(xsi)50, that is,

« i5mf~xsi!. ~2!

Now, let us perturb the MWB equilibrium. If we keep i
mind the picture of the particle following the borders of t
ith bag, its two velocitiesVi 6

(x,t) obey the equations

]Vi 6

]t
1Vi 6

]Vi 6

]x
5E, ~3!

whereVi 1
5ai1v i 1

for the upper border in the phase-spa

plane, andVi 2
52ai1v i 2

for the lower border.
The fieldE reads

E5E01E1 , ~4!

whereE0 is the field created by the unperturbed MWB eq
librium and E1 is the correction at first order for the pe
turbed one. In the plasma caseE050 and in the gravitationa
case it is given by the Poisson law

dE0~x!

dx
524pG(

i
Ai2ai~x!, ~5!

where the summation involves all the bags not yet close
point x @see Fig. 1~b!#.

The linearization of Eq.~3! gives for the two perturbed
velocities of bagi

]v i 1

]t
1

]

]x
~aiv i 1!5E1 , ~6!

]v i 2

]t
2

]

]x
~aiv i 2!5E1 , ~7!
o

the

at

whereE1(x,t) is the sum of the partial fieldsE1i(x,t) cre-
ated by the particles of bagi:

E15(
i

E1i , ~8!

and

]E1i

]x
524pGAi~v i 12v i 2!. ~9!

In addition we will constrain the perturbed fieldE1i to be
equal to zero atx56xsi . It means that the points6xsi are
held fixed. ObviouslyE1i50 for uxu.xsi .

Calculating the difference between Eqs.~6! and ~7!, and
with the help of Eq.~9!, we find, after integrating onx,

]E1i

]t
524pGAiai~v i 11v i 2!. ~10!

Substitutingv i 16v i 2 by Eqs.~9! and~10! into the result
of Eq. ~6! plus ~7!, we obtain, after a Fourier transform ont,
for each bagi,

ai

]

]x
ai

]

]x
E1i~v,x!1v2E1i~v,x!52vJi

2 E1~v,x!,

~11!

wherevJi

2 is the Jeans frequency associated with the bai.

vJi

2 reads

vJi

2 ~x!58pGAiai~x!54pGni~x!. ~12!

Equation~11! provides for each bag an equation connect
E1i to E1 , while Eq. ~8! will give the dispersion relation.

FIG. 2. Dielectric coefficient function of the frequency for
double water-bag distribution function.
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FIG. 3. Time evolution of a double water bag withnlD51000 andL510lD . The velocity distribution function and the representati
in phase space are given.
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For example, in the usual homogeneous plasma case,ai(x)
5ai , and we can now take the Fourier transform onx of Eq.
~11! to obtain

E1i5
vpi

2

v22k2ai
2

E1 . ~13!

The plasma frequencyvpi
2 replaces the Jeans frequenc

with, formally, vpi
2 52vJi

2 , because of the change of sign
the Poisson law. And, indeed, Eqs.~8! and ~13! give the
dispersion relation
,

(
i

vpi
2

v22k2ai
2

51, ~14!

which can be deduced from the general formulas. In
gravitational case, the eigenvaluesv of Eq. ~11! are found
with the constraintE1i(6xsi)50.

It can be noticed that, if the velocity perturbation of th
bags is taken independent of the timet, thenv50 is a so-
lution of Eq. ~11!. This marginal mode corresponds to
translation at a constant velocity of the bags. The argum
reads as follows. Deriving twice with respect tox ~1!, one
obtains
e

-

FIG. 4. Time evolution of la-
belized particles that belong to th
double water bag with nlD

52000 andL510lD and initially
localized into six ranges of veloci
ties.



f

r-

d

y
r

76 PRE 59J. L. ROUET AND M. R. FEIX
FIG. 5. Frequency spectrum o
the rk(t), for ~a! the fundamental
wave number, ~b! the second
wave number, and~c! the third
wave number, created by the pa
ticles of the double water bag with
nlD52000 and L510lD . The
samples are taken fromvpt50 to
vpt5400, every 0.1. The single
arrow gives the frequency excite
by the Landau pole, while the
doubled arrow gives the frequenc
excited by the second pole. Fo
~b! and ~c! the Landau pole is at
frequencies higher than 2vp

21 .
b

tant
d

dxS ai

d

dx
ai D1

d2f

dx2
50. ~15!

Supposing the entire system moves at velocityv, the field
E(x,t) reads, att5Dt,

E~x,Dt !5E~x2vDt,0!5E~x,0!2
dE0~x!

dx
vDt ~16!

where the second term of the right-hand side is the pertur
field E1 defined by Eq.~4!. Now, taking Eqs.~5! and~8! into
account Eq.~15! becomes
ed

ai

d

dxS ai

d

dx
E1i D52v j i

2 E1 , ~17!

which is indeed Eq.~11! with v50. Consequently,v50
corresponds to a translation of the entire system at cons
velocity.

On the other hand, the period of rotationT of a particle of
energy «A in the potentialf of the unperturbed multiple
water bag is given by

T52A2E
0

xA dx

A«A /m2f~x!
, ~18!
FIG. 6. Virial function of time
for ~a! the plasma and~b! the
gravitational case.



:

PRE 59 77PERSISTENCE OF COLLECTIVE FLUCTUATIONS IN . . .
FIG. 7. Gravitational case
Metaequilibrium single water bag
with N55000 particles. Time
evolution of, respectively, the
overall distribution~first column!,
theN/2 particles of initial low en-
ergy ~second column!, and the
N/2 particles of initial high energy
~third column!.
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wherexA is the position of the particle when its velocity
equal to zero.

As already mentioned, the restriction to a on
dimensional~1D! system allows us to obtain the relative
simple system of equations as given by Eqs.~8! and ~11!.
Another interesting point is, still for a 1D system, the ex
tence of an exact code. As 1D particles are infinite pla
sheets, each creates a field that is a constant. Consequ
the total field is a piecewise constant and depends only
-

-
e
ntly
n

the relative positions of the particles. Each one experienc
uniform acceleration as long as it does not cross its ne
bors, then it experiences a new field and a new acceler
motion. The program calculates the time at which crossi
between two particles take place and keeps the position o
relation between them. To have more precision, refer to@11#.
The crucial property of this code is to be exact and have
error introduced, except the round-off errors due to the fin
number of bits treated by the computer.
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FIG. 8. ~a! Time evolution and
~b! time frequency spectrum o
the averaged gravitational field
~around the mean value! taken
each 0.238 85 fromx50 to x
52.3885 for the water-bag cas
containing N510 000 particles.
The field is sampled fromt50 to
t52000 each 0.05. In~b! the ar-
rows indicate the collective
modes, while the gray area give
the range occupied by the indi
vidual modes.
ef
e

h
a

i
uc
d

it
tiv

a

g.
p-
to a

-
ing

ula-
s
per-

-
e

nd
Consequently, this code will take into account all the
fects, the individual as well as the collective ones. Moreov
it will give precisely the individual modes.

III. PLASMA CASE

In the plasma case, the space translation invariance~i.e.,
the homogeneous character of the metaequilibrium@12#! al-
lows us to push the analytical treatment much further. T
well-known classical first-order theory in the graininess p
rameterg @g5(nlD)21, wheren is the density andlD is the
Debye length# of the system uses both a Laplace transform
time and a Fourier transform in space to calculate the fl
tuating field. The treatment is achieved supposing the in
pendence of each wave numberk, in agreement with the
property of the Vlasov equation linearized around an infin
homogeneous metaequilibrium. The result shows a collec
behavior around the resonance frequency forklD!1. These
resonances are given by the dispersion relation, which re
for the Maxwellian distribution function~in the limit of small
k!

vk
25vp

213k2VT
2 , ~19!
-
r,

e
-

n
-

e-

e
e

ds

wherevp is the plasma frequency andVT the thermal veloc-
ity.

In the simple one bag case the dispersion relation@which
has been recovered by the previous calculation, see Eq.~14!#
reads

vk
25vp

21k2a2, ~20!

where6a are the velocities delimiting the border of the ba
This relation shows that collective fluctuations will not ha
pen in this case because the excited waves correspond
phase velocity (a21vp

2/k2)1/2 larger thana and no particles
have a velocity larger thena. This important difference be
tween a water bag and a Maxwellian distribution concern
the level of excitation of smallk spectrum of the charge
density has been studied and checked by numerical sim
tion in @13#. In order to exhibit some collective fluctuation
we must consider at least two bags. In this case the dis
sion relation is given by Eq.~14! for i 51,2. Figure 2, which
gives thee function ofv/k, indicates that the collective con
tribution is given by particles with velocities in the rang
@a2 ,a1#, that is, particles that belong to the outer bag~in
phase space!. The role and the importance of this seco
s
.

FIG. 9. ~a! Time evolution and
~b! time frequency spectra of the
averaged gravitational field
~around the mean value! taken
each 0.2586 fromx50 to x
52.586 for the double water-bag
case containingN510 000 par-
ticles. The field is sampled from
t50 to t52000 each 0.05. In~b!
the arrows indicate the collective
modes, while the gray area give
the range of the individual modes
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FIG. 10. Time evolution in
phase space of a water bag co
taining N55000 particles, in
which a hole is createdab initio,
for almost 130 rotations of the
system.
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pole are clearly exhibited by the double water bag, but si
lar results can be obtained with two electron plasmas at v
different temperatures or with a mixture of electrons, po
tive and negative ions.

The level of excitation of a wave is proportional to
2vG /vF , where vG is the group velocity andvF is the
phase velocity@14#. This expression computed for the seco
pole~inside the water bag! shows that this level function ofk
goes to a maximum. The length of the system will be cho
in order to have a fundamental wave number not too far fr
this maximum. Fortunately, this will give rather small sy
tems, which deemphasizes the role of the Landau p
~which as a matter of fact is not excited, but also not dam
by the multiple water bag!, allowing a better study of the
second pole. Moreover, the computational effort will not
too heavy and more attention can be paid to the grainin
parameter value.

Figure 3 shows the snapshots of the evolution of the
tribution function taken atvpt50, 250, 500, 1000 for a sys
tem with lengthL equal to 10lD and containing 1000 par
ticles ~ions and electrons! by Debye length; this correspond
to a grain. It must be noticed that Balescu@15# has proved
that no global evolution due to graininess can take plac
i-
ry
i-

n

le
d

ss

-

at

time vpt proportional tonlD in the one-dimensional case
and that the overall distribution will thermalize at timevpt
proportional to (nlD)2 @16#. On the other hand, test particle
can relax in time (nlD)vp

21 ~see@17#!; these results have
been numerically confirmed in the case of the water bag
the double water-bag case, an undamped pole exists, w
phase velocity located in the outer bag. Consequently, in
regular fluctuations theory, an infinite level of excitation
present at this frequency. Of course, neglected phenom
~second order in graininess factor, for example! will bring a
finite limit, but we should observe a quick destruction of
beam of particles located initially at this velocity. Turning
numerical simulation, we first observe that the global dis
bution function indeed does not change during the time
ordernlD;1000~see Fig. 3!. On the other hand, we show i
Fig. 4 the evolution of six beams of particles that belong
the distribution but that are labeled in order to follow the
motions; in order to have better insight, the number of p
ticles is now ofnlD52000. Two of them represent the pa
ticles at the border of the inner bag, two the particles at
border of the outer bag, and two are formed with these p
ticles that excite the fluctuations supported by the poles.
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FIG. 11. ~a! Total kinetic en-
ergy KTot function of time for the
system represented,~b! frequency
spectrum ofKTot , ~c! kinetic en-
ergyKTest function of time for the
test particles filling initially the
hole, and~d! frequency spectrum
of KTest. In ~b! and ~d! the arrow
indicates the collective modes
while the gray area gives the
range of the individual modes cal
culated for the complete equilib
rium water bag~with no holes!.
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clear from Fig. 4 that these two beams are quickly~around
vpt540) affected by these collective fluctuations. Let
point out that we are at the limit of validity of the usual fir
order ing theory since the regular collisional term~first order
in g! exhibits singularities for the two beams with velociti
equal to the phase velocity of the second pole~shown in Fig.
4!. Indeed in time now much shorter tha
nlDvp

21 (20–40vp
21 while nlD52000) we see a stron

destruction of these two beams while the others are m
less affected.

The density Fourier transform on both space and ti
variables given in Figs. 5~a!, 5~b!, and 5~c! shows that the
collective fluctuations are mostly supported by the larg
wavelength allowed by the periodic system~that is, k
52p/L). The other modes obtained with larger waveleng
are indeed present but less excited@see, for example, Figs
5~b! and 5~c!, which give the casesk54p/L and k
56p/L, respectively#. Figure 5~a! shows that, in fact, the
Landau pole is excited at a very low level. It is initiall
excited and remains for the duration of the simulation
cause it exhibits no dumping@13#.

The rapid destruction of a perturbed equilibrium system
the Vlasov limit has also been observed in the case o
Lorentzian velocity distribution function for which the en
ergy diverges on smallk because of a large number of pa
h

e

t

s

-

n
a

ticles in the tail. This indicates the nonphysical character
both distributions that have too slow a decrease inv of the
velocity distribution and that have no particles of high velo
ity at all, but presents a sharp cutoff.

Nevertheless, in the latter case, it is an excellent mo
that allows analytical treatment, as can be seen in Sec. II
is numerically confirmed in the next section. Finally, th
double water-bag model is a good approximation of a t
electronic population plasma having two differe
temperatures—the Landau pole of the low-temperat
population exciting the particles that belong to the hig
temperature population.

IV. GRAVITATIONAL CASE

The change of sign in the interaction gives very differe
dynamical properties between plasma and gravitational
tems; for example, the virial presents very large and perio
oscillations in the gravitational case while, in the plasma
looks like a noise@see Figs. 6~a! and 6~b!#. Actually, the
absence of neutralizing species is the point that prevent
from adopting a similar analytical treatment for both sy
tems. Moreover, the neutralizing background is needed
treat the Jeans instability, which requires an infinite medi
@18#.
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FIG. 12. Time evolution in
phase space of a population o
particles that belong to the wate
bag represented in Fig. 7 and in
tially localized in the same area a
the hole of Fig. 10.
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The lack of spatial homogeneity prevents the indep
dence between the different wave numbers and impos
proper mode analysis. As already mentioned, the calculu
such modes is easily done when we restrict consideratio
the one-dimensional multiple water-bag distribution fun
tion. Nevertheless, even in that case, the determination o
modes become more and more difficult as the numbe
bagsN increases sinceN coupled equations must be solve

Systems~11!,~8! have been numerically solved for th
four first modes both for the single water bag and a dou
water bag. In that latter case we have two independent
rametersA2 /A1 and «2 /«1 whereAi is the height of bagi
and « i is the energy of the border of bagi ~the bags are
numbered from outside to inside!. A shoot method, coupled
with a Runge-Kutta scheme of order 4@19#, gives for the first
collective modes, which are alternatively even and odd,
spectively;v50, v50.7,v51.1,v51.5 for the single wa-
ter bag andv50, v50.8, v51.2, v51.7 for the double
water bag withA25A1 and«25«1/2. For values ofv large
enough, the Jeans frequencyvJ does not play any role an
the solutions are those of a string with fixed end points.

As already mentioned, the first modev50 is a marginal
mode corresponding to an overall translation of the bags
our numerical experiments, the initial conditions are cho
such that the total impulsion is zero and, consequently,
mode will not be excited.

On the other hand, the period of rotation of the particles
the field of the unperturbed metaequilibrium gives the in
vidual particular modes. The oscillation frequencies va
from v50.43 at the center tov50.39 at the border for the
single water bag and fromv50.49 tov50.42 in the double
water-bag case.
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The numerically simulated system containsN particles of
equal massm uniformly distributed inside the phase-spa
contour of energy« i with the phase-space densityAi . The
normalization is such that the total massmN equals 1 and
«1 , and the maximum energy equals 1. With this normali
tion and taking 4pG51, the square of the Jeans frequen
vJ0

2 defined atx50 is equal to 3/16 for the single water ba
and 3 (A211)/8 (2A211) for the double water bag with
A2 /A151 and«25«1/2.

Figure 7 shows the snapshots of the evolution of a sin
water bag for, respectively, the overall distribution, the pop
lation of initially high-energy particles, and the population
initially low-energy particles. The first column shows that n
global change happens and the water-bag character o
distribution is conserved for the duration of the simulatio
On the other hand, the two last columns show that the
populations mix but keep a strong cohesion. This proces
very far from the idea of a smooth diffusion. Indeed, t
Fourier transform~FT! of the field given in Fig. 8 exhibits
the collective and individual modes~including the harmon-
ics! theoretically determined before and the biggest mod
the first collective mode atv50.7. In order to have bette
statistics and to have both even and odd contributions,
field is collected for 10 positions equally spaced out from
to xs1 and the averaged value taken around the mean valu
given in Fig. 8.

The same kind of diagnostic can be obtained with
double water bag and Fig. 9 gives the time Fourier transfo
of the field collected under the same conditions as for
single water bag. Also, in that case, collective and individ
modes, including the harmonics of the individual excitatio
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FIG. 13. Time evolution in
phase space of a water bag co
taining N55000 particles, in
which two symmetric holes are
createdab initio, for almost 130
rotations of the system.
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are present and dominated by the first collective mode av
;0.8.

For these two distribution functions, the single and dou
water bag, the numerical results indicate that collect
modes are highly excited by the grainy character of the
tribution function describing the systems.

V. STABILITY OF HOLES IN PHASE SPACE

Numerical simulations of systems outside equilibriu
show that they do not relax toward an equilibrium: they d
velop arms that carry the excess kinetic energy and
around an empty zone of phase space. This process, w
seems to be systematic, creates holes in phase space
remain for the duration of the simulation and prevent
system from reaching a complete metaequilibrium. Nev
theless, taking a time average allows one to obtain a di
bution of the alone energy@7#. Moreover, numerical simula
tions reveal that the number of holes and their positions
closely related to the initial shape of the distribution fun
tion.

In order to study the behavior of this structure, a hole
createdab initio in the water-bag equilibrium@20#. Figure 10
shows the evolution of the hole for nearly 130 rotations
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the system. The hole is still present at the end of the sim
lation and it resists the differential rotation of the particl
that are localized at its border. In order to have a be
insight into the behavior of this hole, it is initially filled with
‘‘test particles’’ that experience the field of the other but
not contribute to the field. Figures 11~a!, 11~b!, 11~c!, and
11~d! give, respectively, the kinetic energy of the particles
the systems, its Fourier transform, the kinetic energy of
test particles and its Fourier transform. The excited mod
Fig. 11~d!, are the individual modes, indicating that the hol
rotate at the same velocity as the particles. Moreover, th
holes triggered the collective mode, as can be seen in
11~b!.

To show the long time scale of the hole, we go back to
complete water-bag equilibrium and follow the particl
which are initially localized in the area of the previous ho
These particles are just ‘‘labeled’’ and have the same ph
cal properties as the others. Figure 12 shows that the dif
ential rotation between particles of low and high ener
stretches the area occupied by these labeled particles.
ertheless, the presence of another effect can be detecte
cause the stretching is not complete.

Finally, we study numerically the behavior of symmetr
structures. Starting from a symmetric distribution functio
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the Eulerian simulations~for which the Vlasov equation is
directly integrated! show the formation of an even number
symmetric holes~two in the simulation given by Mineau
@7#!. In our case, the particle description of the system bre
the Liouville invariant and the holes may even disappe
The stability of two symmetric holes initially dug in th
single water bag is numerically studied. Figure 13 shows
evolution of test particles initially localized in these holes.
reveals that the symmetry rapidly breaks: one of the ho
goes to the center while the other goes near the border o
bag. Then, as already mentioned, their periods of rotat
given by the particles of its border, change and rapidly me
to form a single hole.

VI. CONCLUSION

This paper gives both analytical and numerical a
proaches of the determination of collective modes in
gravitational and plasma systems. These approaches are
sible because of the restriction to 1D systems and to
multiple water-bag model. It must be pointed out that t
s

s

a

s
r.

e
t
s
he
n,
e

-
e
os-
e

e

theory of plasma assumes a neutral medium that is, mos
the time, a uniform motionless background. The infin
gravitational system also needs a neutralizing backgrou
but this system is unstable under Jeans instability and c
ters into subsystems, the dimension of which is of the or
of the Jeans length@21#. Here, the model studied is not infi
nite and does not need such an unphysical background.

N-body numerical simulations confirm pretty well the th
oretical results and show that the gravitational system p
sents very strong collective behavior that in a certain sens
stronger than in the plasma case.

These collective effects triggered by the grainy nature
our system explain the very strange behavior of a labe
population, a fact already mentioned in Luwel and Seve
@20#. Moreover, numerical simulations show that holes a
structures that certainly play an important role in on
dimensional systems, a fact already noticed in the plas
case. With an initial hole, the water bag almost keeps
shape for a time large compared to the time necessar
destroy the same area filled with particles.
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